Undergraduate Technological Degree ## **HEALTH SAFETY AND ENVIRONMENT** #### 1. Course Objectives The Health Safety and Environment DUT (Higher National Diploma) is a 4 term course that trains, in a cross disciplinary way, employees of private companies and public services how to manage various aspects of risk and environmental protection. In their professional and personal lives, people constantly face hazardous situations and activities which can be of technical, material or organizational origins. Potential harm can be done to individuals (work-related accidents and diseases) or more generally to populations and the ecosystem. In such a context the role and mission of the HSE technicians is to improve working conditions and the working environment by managing risk. Thus HSE technicians assist employers to comply with the legal obligations of their professional activities. Promoting a human dimension is fully part of the mission of the HSE technician, who must co-operate with all the departments, both external and internal, of companies such as occupational health, work inspections, supervisory boards and emergency services. Faced with the increasing complexity of machines, products, processes and process, and in a context where the social demand is becoming increasingly pressing for the protection of people and the environment, the HSE technician has to ensure health and safety, whilst, at the same time promote innovation. Finally this course complies with the national and European requirements for occupational health, environmental protection and sustainable development. The HSE diploma can be followed as initial training, full-time study, work placement, sandwich course, and apprenticeship or through on-the-job training. Applications for the HSE DUT are welcome from students with a general, technological or vocational baccalaureate (high school diploma) with advanced science. Other equivalent diplomas are also considered. #### **MOST COMMON JOB PROSPECTS** | | CODE
ROME | TYPES OF JOBS | |---|--------------|---| | THE HSE DUT IS A VOCATIONAL DIPLOMA THAT LEADS TO WORK IN THE OCCUPATIONAL HEALTH AND SAFETY DOMAIN, IN RISK HEALTH AND ENVIRONMENTAL FIELDS. | H1303 | Technical industrial HSE intervention Industrial health, safety and environmental technician Occupational health and safety instructor Occupational health, safety and environmental technician Industrial risk safety technician | | CIVIL SECURITY AND
EMERGENCY SERVICES | K1705 | Firefighter
Industrial firefighter
Disaster prevention officer | | HEALTH AND SAFETY ON
CONSTRUCTION SITES | F1204 | Construction site health and safety officer Construction site health and safety coordinator | | INTERVENTIONS IN
HAZARDOUS ENVIRONMENTS
AND NOXIOUS SUBSTANCES | 11503 | Chemical and radioactive unit firefighter Chemical, biological, radiological and nuclear decontamination officer Technological risk officer | | INSPECTION FOR SOCIAL AFFAIRS | K1502 | Health and safety inspector | |--|-------|---| | SUPERVISION OF ECO-
INDUSTRIAL PARK | K2306 | Technical intervention for industrial laboratory analysis | #### 2. Activities and Skills Tables The missions and activities associated with the HSE DUT diploma can be various - therefore the training is multi-disciplinary and requires that students: - Have good scientific and technological knowledge in order to understand physical, chemical and biological concepts necessary to identify and assess risk and be able to select the most appropriate protection in the economical and technical context of today, as well as taking into account human, material and financial factors when accidents occur. - Are familiar with legal terms and have a clear perception of risk management economy to put forward to relevant authorities the best solution to implement, in compliance with the legal frame of the company or the public service. - Have good communication skills. HSE workers have to deal with all types of people operators, technicians, executives, managers, contractors, civil servants etc...they have to raise awareness, train, advise, convince and pay attention to both individuals and groups' psychological behaviors. HSE workers master new concepts and develop internal and external communication tools. Whilst the programme aims to provide the student with the knowledge necessary to work in the HSE field, it also aims to provide the means to enable him to adapt to the rapidly changing needs of business. Moreover, beyond the development knowledge, the course is designed enable students to acquire methodologies of work and the reasoning to develop a critical sense of citizenship. As it is a multi-disciplinary program, it is essential to have a main thread that will not only provide a guideline for students, but also coordinate and link each module to each other and therefore create a coherent structure. This main thread is 'Assessing and Managing Risk'. #### SPECIFIC ACTIVITIES AND SKILLS | ACTIVITIES | COMPETENCIES | | | | | | |---|--|--|--|--|--|--| | RISK ANALYSIS | Identify and locat hazards Assess and prioritize technological, professional and environmental risk Select and implement methods for quantitative analysis / qualitative risk. Carry out normative regulatory monitoring | | | | | | | METROLOGY AND DATA ANALYSIS | Select appropriate instrumentation Be familiar with calibration and the use of measuring devices Implement and perform measurement campaigns Analyze measurement campaign data in accordance with possible indicators or associated value guides | | | | | | | ESTABLISHMENT OF A RISK PREVENTION APPROACH | Associate hazards with their appropriate regulations Write and update legal documents (risk assessments, impact studies and dangers, security protocols, prevention plans, fire permit, etc) know how to define indicators Design and plan a global and | | | | | | | | interdisciplinary continuous improvement approachTrain and inform stakeholders (employees, | |---|--| | | populations, trade unions, employers, etc) about health, safety and environmental issues. | | | Understand and justify prevention actions
based on scientific, technological,
economical or legal grounds | | | Put in place human, technological and
organizational prevention elements | | | Develop and use it tools for HSE policies
(training, procedures, signing systems) Implement prevention plans | | | Check for validity and efficiency of control
systems already in place Learn from feedback | | | Establish, set up and promoting an HSE approach in line with the principles of sustainable development and social and environmental responsibilities | | DEVELOPING A SUSTAINABLE HSE POLICY | Advise on acceptable level of risk Identify and raise the awareness of health
and safety personnel | | | Understand the regional organization of ris
prevention and ways of implementing it Advise and alert employers to their HSE civ
and criminal liabilities | | | Be familiar with human, technological and
organizational emergency equipment and
procedures | | TAKING PART IN EMERGENCY RESPONSE PLANS | Understand the territorial organization of
emergency equipment in case of accidents Write emergency procedures and/or
intervention plans and ensure continuity or | | LANS | intervention plans and ensure continuity or service Have a good command of procedures in ca of crisis | | | Communicate in emergency situations | ## GENERAL ACTIVITIES AND SKILLS | ACTIVITIES | COMPETENCIES | | | | | | |-------------------------------|---|--|--|--|--|--| | CONDUCTING AND MANAGING PLANS | Apply methodologies in a particular contextImplement problem solving methods | | | | | | | COMMUNICATING AND INFORMING | Promote a citizenship and corporate culture Develop and use it tools Be fluent with signing systems Write reports Master different forms of communication – written and oral Express yourself in English | | | | | | #### 3. Program Overview #### a. Course description The Course is structured over four semesters, which are divided into themes and further subdivided into modules. The themes are grouped into Teaching Units, each semester consisting of four Units. The training comprises 1500h (85%) of HSE Core Modules and 300 hours (15%) of Additional Modules taught in the third and fourth semester. Throughout the course, students work on a Professional Personal Project which helps to determine whether a student wishes to move into a professional situation, or continue into higher education. These additional modules form part of a University Diploma in HSE technology. In the case of studies leading to qualifications at Level 1 or 2, these studies are designed to develop complementary skills in science and technology. Additional modules comprise part of the training but only those aimed at professional insertion are mentioned below. For further studies, each IUT has designed their own modules in line with the CPN recommendations and are presented in separate documents. In both cases the number of hours is the same. New learning methods entitled "learn differently" are also well represented within the 180 hours (10%). Finally to meet the professional requirements of HSE technicians, a large part (300 hours) is devoted to apprenticeship, IT tools and foreign languages. #### b. Modules synthetic charts per semester The supervised 1800 hours of teaching are delivered through a combination of lectures (20%) seminars (35%) and tutorials (15%). Seminars can accommodate 26 students and tutorials 16. Please note that for safety reasons the number of students may be reduced, for example tutorials dealing with combustion, electricity or hazardous chemical reactions. The IUT management board can decide to allow an increase of 20% of the total number of hours (360) for an improved response to the local, economical and professional environment. | TEACHING UNIT
(TU) | TOPICS | MODULE
REFERENC
E (M) | MODULE
NAME | COEF
./M | TOTA
L
COEF.
/TU
ECTS | IOIAL | HOURS | TOTAL
HOURS
PRACTI
CAL
WORK | TOTAL
HOURS
STUDEN
T/TU | | |-----------------------|--|-----------------------------|---|--|-----------------------------------|-------|-------|---|----------------------------------|----| | RISK
MANAGEMENT | | M 1101 | Risk assessment
introduction,
concepts and
terms | 1,5 | | 2 | 10 | 12 | 24 | | | | T11
HEALTH SAFETY
SUSTAINABLE
DEVELOPMENT | M 1102 | Occupational
health and safety.
Risk assessment
introduction | 1,5 | 6 | 2 | 10 | 12 | 24 | | | | | DEVELOPIVIENT | M 1103 | Risk
management,
environmental
issues | 1,5 | | 2 | 10 | 12 | 24 | | | | M 1104 | First Aid certification | 1,5 | | 4 | 10 | 8 | 16 | | | T12 | | | | | | | | | | | |--|-----------------------------------|------------------------------|----------|---|-----|----|----|-----|-----|-----| | COMMUNICATION Communication techniques and general culture. 2 | | -10 | M 1201 | English | 2 | | 3 | 8 | 24 | 35 | | MANAGEMENT NETHODS AND TOOLS Machinery Safety Mark | | COMMUNICATI
ON METHODS | M 1202 | techniques and general culture. Communication | 2 | | 2 | 6 | 22 | 30 | | ASPECTS M 1204 management 1 6 6 8 20 | MANAGEMENT
METHODS AND | REGULATORY | M 1203 | law and | 2 | 9 | 14 | 8 | 8 | 30 | | 114 MATHEMATICS M 1205 mathematical 2 14 10 16 30 | | | M 1204 | | 1 | | 6 | 6 | 8 | 20 | | TU 13 : RISK M 1302 Ecosystems and 2 Structure of materials and 1,5 product properties and 1,5 thermochemistry M 1305 Safety related to mechanics and 1,5 energy M 1401 Project management M 1402 IT tools 1 T18 PROJECT SUPERVISION M 1404 PROJECT T18 T1 | RISK
MANAGEMENT
SCIENCE AND | | M 1205 | mathematical | 2 | | 4 | 10 | 16 | 30 | | TU 13: RISK MANAGEMENT SCIENCE AND TECHNIQUES M 1303 M 1304 M 1305 M 1306 M 1306 M 1307 Structure of materials and 1,5 product properties Thermodynamics and 1,5 thermochemistry M 1306 M 1306 M 1307 M 1308 M 1308 M 1309 M 1309 M 1300 | | | M 1301 | | 2 | | 4 | 10 | 16 | 30 | | M 1303 materials and 1,5 product properties T16 M 1304 mand 1,5 and 1,5 thermochemistry M 1305 Applied chemistry M 1306 mechanics and 1,5 energy M 1401 Project management M 1402 T tools 1 T17 PROJECT SUPERVISION T18 PERSONAL AND PROFESSIONAL PROJECT T18 PROJECT T18 PROJECT T18 PROJECT T18 PROJECT T18 PROJECT Discovery of trades and 1,5 environments. Introduction to project management T18 Project management T20 | | T16 PRODUCT AND MACHINERY | M 1302 | | 2 | | 8 | 8 | 14 | 30 | | T16 | | | M 1303 | materials and product properties | 1,5 | 10 | 3 | 6 | 16 | 25 | | No. SAFETY M 1305 Applied 1,5 | | | M 1304 | and
thermochemistry | 1,5 | | 4 | 10 | 16 | 30 | | M 1306 mechanics and 1,5 4 10 16 30 | | | M 1305 | | 1,5 | | 4 | 10 | 16 | 30 | | T17 PROJECT SUPERVISION M 1402 IT tools I SUPERVISION M 1403 HSE supervised project project Discovery of trades and professional environments. Introduction to project management 4 12 18 2 4 12 18 4 12 4 20 | | | M 1306 | mechanics and | 1,5 | | 4 | 10 | 16 | 30 | | TU 14: PROJECTS: TOOLS M 1402 IT tools 1 M 1403 HSE supervised project 2 Personal professional project. Discovery of trades and professional environments. Introduction to project management D 2 4 12 18 2 4 12 18 | | T47 | M 1401 | • | 1 | | 6 | 4 | 8 | 18 | | TU 14: PROJECTS: TOOLS T18 PERSONAL AND PROFESSIONAL PROJECT M 1404 Discovery of trades and professional environments. Introduction to project management | | PROJECT | M 1402 | IT tools | 1 | | 2 | 4 | 12 | 18 | | TU 14: PROJECTS: TOOLS T18 PERSONAL AND PROFESSIONAL PROJECT M 1404 PROJECT M 1404 Personal professional professional 1 professional environments. Introduction to project management 5 4 12 4 20 | | SOT ENVISION | M 1403 | • | 2 | | | | | | | TOTAL HOURS SEMESTER 1 30 30 78 146 240 464 | PROJECTS: | PERSONAL AND
PROFESSIONAL | M 1404 | Personal professional project. Discovery of trades and professional environments. Introduction to project | 1 | 5 | 4 | 12 | 4 | 20 | | | ТО | TAL HOURS | SEMESTEI | R 1 | 30 | 30 | 78 | 146 | 240 | 464 | | TEACHING UNIT | TOPICS | MODULE
REFERENC
E (M) | MODULE
NAME | COEF
./M | | HOUDS | TOTAL
HOURS
SUPERV
ISED
WORK | TOTAL
HOURS
PRACTI
CAL
WORK | TOTAL
HOURS
STUDEN
T/TU | |--|---|-----------------------------|---|-------------|---|-------|--|---|----------------------------------| | | T21 | M 2101 | Business English | 1,5 | | 1 | 10 | 24 | 25 | | TVI 41 | COMMUNICATI
ON METHODS
AND TOOLS | M 2102 | Communication techniques. Critical analysis | 1,5 | | 4 | 14 | 26 | 44 | | TU 21: RISK MANAGEMENT METHODS AND | T22 | M 2103 | Workplace and social security regulations | 1,5 | 7 | 10 | 16 | 4 | 30 | | TOOLS | T22
RISK
MANAGEMENT
AND LEGAL
ASPECTS | M 2104 | Civil, criminal
and
administrative
liabilities | 1,5 | | 10 | 16 | 4 | 30 | | | 151 2515 | M 2105 | Occupational
health and safety
regulations | 1 | | 6 | 10 | 4 | 20 | | TU 22 :
SCIENCE AND | T23
APPLIED
BIOLOGY | M 2201 | Applied toxicology and microbiology | 2,5 | | 8 | 12 | 20 | 40 | | | | М 2202 | Communication
techniques and
general culture.
Communication
issues | 2,5 | | 8 | 16 | 16 | 40 | | TECHNOLOGY
APPLIED TO
RISK
MANAGEMENT | T24
CHEMISTRY
AND
RADIATION | M 2203 | Physiology,
psychology,
workplace
ergonomics | 2 | 9 | 4 | 16 | 16 | 36 | | | | M 2204 | Combustion reactions | 1 | | 4 | 14 | 12 | 30 | | | HAZARD | M 2205 | Hazardous
chemical
reactions | 1 | | 6 | 10 | 8 | 24 | | | | M 2301 | Ionizing and non-
ionizing
radiations | 2 | | 4 | 10 | 24 | 38 | | TU 23: | T25
MACHINERY
AND | M 2302 | Mathematics and applied chemistry tools | | | 6 | 12 | 20 | 38 | | RISK
MANAGEMENT
TECHNOLOGY | CONSTRUCTIO
N
TECHNOLOGIES
, APPLIED | M 2303 | Electrical installations technology | 1,5 | 9 | 4 | 10 | 16 | 30 | | | PHYSICS | M 2304 | Fluid mechanics,
material strength | | | 5 | 10 | 20 | 35 | | | | M 2305 | Acoustics and vibration | 2 | | 10 | 12 | 16 | 38 | | TU 24:
PROJECTS:
METHODOLOGY | T26
PROJECT
MANAGEMENT | M 2401 | Construction and
civil engineering
technologies
Supervised
project:
HSE jobs | | 5 | | | | | | | M 2402 | Personal professional project, knowing oneself. Work placement preparation | 2 | | 2 | 6 | 12 | 20 | |------------------------|--------|--|----|----|----|-----|-----|-----| | TOTAL HOURS SEMESTER 2 | | | 30 | 30 | 92 | 194 | 242 | 528 | | TEACHING UNIT | TOPICS | MODULE
REFERENC
E (M) | NAME | COEF
./M | TOTA
L
COEF.
/TU
ECTS | TOTAL
HOURS
LECTUR
E | TOTAL
HOURS
SUPERV
ISED
WORK | TOTAL
HOURS
PRACTI
CAL
WORK | TOTAL
HOURS
STUDEN
T/TU | |---|--|-----------------------------|--|----------------|-----------------------------------|-------------------------------|--|---|----------------------------------| | | T31
COMMUNICA | M 3101 | English: technical terms | ^l 2 | | 1 | 10 | 24 | 35 | | | TION
METHODS
AND TOOLS | M 3102 | Workplace communication | 1,5 | | 4 | 6 | 16 | 26 | | TU 31:
UE31 | T32
RISK | M 3103 | Safety systems
analysis | 1 | | 3 | 6 | 6 | 15 | | WORKPLACE
HEALTH
SAFETY AND | ASSESSMENT
METHODOLO
GY | M 3104 | Workplace risk assessment | 1,5 | 10 | 2 | 8 | 12 | 22 | | WELFARE | Т33 | M 3105 | Environmental factors | 1,5 | | 8 | 10 | 12 | 30 | | | WORKPLACE | М 3106 | Ergonomics | 1,5 | | 4 | 10 | 16 | 30 | | | SITUATIONS | М 3107 | Workplace
psychology | 1,5 | | 8 | 10 | 12 | 30 | | | T34
NUCLEAR,
RADIOLOGICA | M 3201 | Biological
hazard, radiation
protection | 1,5 | | 8 | 12 | 12 | 32 | | | L,
BIOLOGICAL,
CHEMICAL
AND
EXPLOSION
HAZARDS | М 3202 | Chemical hazards | : 1 | | 4 | 6 | 12 | 22 | | TU 32: | T35
SECURITY OF
PLANT AND | М 3203 | Fire safety | 2,5 | | 6 | 14 | 18 | 38 | | TECHNOLOGICA
L AND
ENVIRONMENT
AL RISK
PROJECTION | | M 3204 | Workplace
installations and
equipment safety,
explosion hazards | | 10 | 9 | 14 | 8 | 31 | | AND PREVENTION | EQUIPMENT | М 3205 | Electrical hazards | 1 | | 4 | 8 | 8 | 20 | | | T36
ENVIROMENT
AL | М 3206 | Environmental
law | 1 | | 8 | 8 | 4 | 20 | | | PROTECTION AND SUBSTAINABL E DEVELOPMEN | М 3207 | Environmental risk assessment | 1,5 | | 6 | 10 | 16 | 32 | | IMPLEMENTATI | T37 | M 3301 | Supervised project. Case study (80h) | 2 | | | | | | | | PROJECT
MANAGEMEN
T | М 3302 | Personal
professional
project.
Post DUT plans | 2 | 10 | 4 | 12 | 4 | 20 | | | М 3303С | Practical aspects of safety of installations, risks and industrial accidents | 2 | | 10 | 18 | 16 | 44 | |------------------------------|---------|--|----|----|-----|-----|-----|-----| | T38
ADDITIONAL
MODULES | М 3304С | Gas emissions
and pollution
control. Case
study | 2 | | 13 | 14 | 16 | 43 | | | М 3305С | Control of health
and safety at
work: case
analysis | 2 | | 13 | 14 | 16 | 14 | | TOTAL HOURS SEMESTER 3 | | | 30 | 30 | 115 | 190 | 228 | 533 | | TEACHING UNIT
(TU) | TOPICS | MODULE
REFERENC
E (M) | NAME | COEF
./M | 4 '4 Y L' L' | TOTAL
HOURS
LECTUR
E | TOTAL
HOURS
SUPERV
ISED
WORK | HOURS | TOTAL
HOURS
STUDEN
T/TU | |-----------------------------------|--|-----------------------------|--|-------------|--------------|-------------------------------|--|-------|----------------------------------| | | T41
REGULATORY | M 4101 | Environmental approach | 2 | | 6 | 10 | 4 | 20 | | TECHNOLOGICA
L AND | AND
ORGANIZATIO
NAL ASPECTS
AND | M 4102 | Technological
hazards and
classified
installations | 2 | 6 | 6 | 10 | 14 | 30 | | AL RISK
MANAGEMENT | TECHNIQUES
OF
ENVIRONMEN
TAL RISK | M 4103 | Natural hazards | 2 | | 4 | 8 | 8 | 20 | | TU 42 :
PROJECT:
MONITORING | | M 4201 | English: HSE approach | 2,5 | | 3 | 4 | 8 | 15 | | | T42
PROJECT
MANAGEMEN
T | M 4202 | Communication
techniques:
corporate culture
and writing | 2,5 | 6 | 2 | 8 | 10 | 20 | | AND FEEDBACK | | M 4203 | Supervised project implementation (60h) | 1 | | | | | | | TU 43:
WORK
PLACEMENT | T43
WORK
PLACEMENT | M 4301 | Work placement
(minimum 10
weeks) | 12 | 12 | | | | | | | | M 4401C | Adaptation to
work as a HSE
Technician | 1,5 | | 10 | 18 | 16 | 44 | | TU 44: | Т44 | M 4402C | Organisation of public safety | 1,5 | | 12 | 14 | 16 | 42 | | Additional modules -2 | ADDITIONAL
MODULES | M 4403C | Using an
environmental
standard | 1,5 | 6 | 12 | 14 | 16 | 42 | | | | M 4404C | Using a Health &
Safety frame of
reference | 1,5 | | 12 | 14 | 16 | 42 | | TOTAL HOURS SEMESTER 4 | | | | 30 | 30 | 67 | 100 | 108 | 275 | | TOTAL | HOURS SEM | ESTER 1 + 2 | + 3 + 4 | 120 | 120 | 352 | 628 | 820 | 1800 | | ETCS | | | | | | 20% | 35% | 45% | 100% |